Skip to main content

Sigma Rules and Measures of Central Location

๐Ÿ“น Video Overviewโ€‹

๐ŸŽฏ What We're Learning Todayโ€‹

Main Topics:

  1. Sigma Rules (โˆ‘) - Math shortcuts for summations

  2. Measures of Central Location - Finding the "middle" or "typical" value

    • Mode (most common)

    • Mean (average)

    • Median (middle value)


Part 1: Sigma Rules (โˆ‘)โ€‹

๐Ÿ”ค What is Sigma (โˆ‘)?โ€‹

Sigma (โˆ‘) = Mathematical shorthand for "add everything up"

Example: Defective items in 10 shipments: 3, 4, 1, 5, 2, 3, 2, 6, 3, 1

Instead of writing: xโ‚ + xโ‚‚ + xโ‚ƒ + xโ‚„ + xโ‚… + xโ‚† + xโ‚‡ + xโ‚ˆ + xโ‚‰ + xโ‚โ‚€

We write:

โˆ‘i=1nxi\sum_{i=1}^{n} x_i

๐Ÿ’ก Memory hack: Think of โˆ‘ as a "smart calculator" that knows to add everything from position 1 to n.

Breaking down the notation:

  n          โ† Stop here (n = 10 in our example)
โˆ‘ x_i โ† Sum all x values
i=1 โ† Start here (first observation)

๐Ÿ“ The 5 Essential Sigma Rulesโ€‹

Rule 1: Sum of a Constantโ€‹

Formula:

โˆ‘i=1na=nร—a\sum_{i=1}^{n} a = n \times a

Plain English: If you add the same number n times, just multiply!

Example: Data series: 3, 3, 3, 3, 3 (n = 5)

โˆ‘i=153=3+3+3+3+3=5ร—3=15\sum_{i=1}^{5} 3 = 3 + 3 + 3 + 3 + 3 = 5 \times 3 = 15

๐Ÿ’ก Memory hack: Adding 5 threes is just 5 ร— 3. Don't overthink it!


Rule 2: Sum of a Constant ร— Variableโ€‹

Formula:

โˆ‘i=1naร—xi=aร—โˆ‘i=1nxi\sum_{i=1}^{n} a \times x_i = a \times \sum_{i=1}^{n} x_i

Plain English: You can "pull out" the constant from the sum!

Example: Defective items: 3, 4, 1, 5, 2, 3, 2, 6, 3, 1

If each defective item costs 5 NIS (a = 5), what's the total damage?

โˆ‘i=1105xi=5ร—โˆ‘i=110xi=5ร—(3+4+1+5+2+3+2+6+3+1)=5ร—30=150ย NIS\sum_{i=1}^{10} 5x_i = 5 \times \sum_{i=1}^{10} x_i = 5 \times (3+4+1+5+2+3+2+6+3+1) = 5 \times 30 = 150 \text{ NIS}

๐Ÿ’ก Memory hack: The constant is like a "multiplier hat" - you can put it on at the end instead of on each item!


Rule 3: Sum of Additionโ€‹

Formula:

โˆ‘i=1n(xi+yi)=โˆ‘i=1nxi+โˆ‘i=1nyi\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i

Plain English: Sum of sums = sum of each separately!

Example:

xแตขyแตขxแตข + yแตข
134
246
369

โˆ‘i=13(xi+yi)=4+6+9=19\sum_{i=1}^{3} (x_i + y_i) = 4 + 6 + 9 = 19

OR:

โˆ‘i=13xi+โˆ‘i=13yi=(1+2+3)+(3+4+6)=6+13=19\sum_{i=1}^{3} x_i + \sum_{i=1}^{3} y_i = (1+2+3) + (3+4+6) = 6 + 13 = 19

๐Ÿ’ก Memory hack: Addition is "friendly" - you can split it up!


Rule 4: Sum of Multiplication (TRICKY!)โ€‹

Formula:

โˆ‘i=1n(xiร—yi)โ‰ โˆ‘i=1nxiร—โˆ‘i=1nyi\sum_{i=1}^{n} (x_i \times y_i) \neq \sum_{i=1}^{n} x_i \times \sum_{i=1}^{n} y_i

Plain English: You CANNOT split multiplication! Must multiply first, then sum.

Example:

xแตขyแตขxแตข ร— yแตข
133
248
3618

CORRECT:

โˆ‘i=13(xiร—yi)=3+8+18=29\sum_{i=1}^{3} (x_i \times y_i) = 3 + 8 + 18 = 29

WRONG:

โˆ‘i=13xiร—โˆ‘i=13yi=6ร—13=78โ‰ 29\sum_{i=1}^{3} x_i \times \sum_{i=1}^{3} y_i = 6 \times 13 = 78 \neq 29

โš ๏ธ CRITICAL: Multiplication is NOT friendly! Don't split it!

๐Ÿ’ก Memory hack: "Multiply INSIDE the sum, not outside!"


Rule 5: Sum of Squares (ALSO TRICKY!)โ€‹

Formula:

โˆ‘i=1nxi2โ‰ (โˆ‘i=1nxi)2\sum_{i=1}^{n} x_i^2 \neq \left(\sum_{i=1}^{n} x_i\right)^2

Plain English: Square each value first, THEN sum. Not the other way around!

Example:

xแตขxแตขยฒ
11
24
39

CORRECT:

โˆ‘i=13xi2=1+4+9=14\sum_{i=1}^{3} x_i^2 = 1 + 4 + 9 = 14

WRONG:

(โˆ‘i=13xi)2=(1+2+3)2=62=36โ‰ 14\left(\sum_{i=1}^{3} x_i\right)^2 = (1+2+3)^2 = 6^2 = 36 \neq 14

โš ๏ธ CRITICAL: Square INSIDE first, then add!

๐Ÿ’ก Memory hack: "Square the individuals, not the team!"


๐Ÿ“‹ Sigma Rules Quick Referenceโ€‹


๐Ÿงฎ Practice Problem: Complete Walkthroughโ€‹

Given:

xแตขyแตข
13
24
36

Problem 1: Calculate โˆ‘i=13(2xi+3yi)\sum_{i=1}^{3} (2x_i + 3y_i)

Solution:

โˆ‘i=13(2xi+3yi)=โˆ‘i=132xi+โˆ‘i=133yi\sum_{i=1}^{3} (2x_i + 3y_i) = \sum_{i=1}^{3} 2x_i + \sum_{i=1}^{3} 3y_i

=2โˆ‘i=13xi+3โˆ‘i=13yi= 2\sum_{i=1}^{3} x_i + 3\sum_{i=1}^{3} y_i

=2(1+2+3)+3(3+4+6)= 2(1+2+3) + 3(3+4+6)

=2(6)+3(13)=12+39=51= 2(6) + 3(13) = 12 + 39 = 51


Problem 2: Calculate โˆ‘i=13(xi+yi)2\sum_{i=1}^{3} (x_i + y_i)^2

Solution:

First expand: (xi+yi)2=xi2+2xiyi+yi2(x_i + y_i)^2 = x_i^2 + 2x_iy_i + y_i^2

โˆ‘i=13(xi+yi)2=โˆ‘i=13xi2+2โˆ‘i=13xiyi+โˆ‘i=13yi2\sum_{i=1}^{3} (x_i + y_i)^2 = \sum_{i=1}^{3} x_i^2 + 2\sum_{i=1}^{3} x_iy_i + \sum_{i=1}^{3} y_i^2

Calculate each part:

  • โˆ‘xi2=12+22+32=1+4+9=14\sum x_i^2 = 1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14

  • โˆ‘xiyi=(1ร—3)+(2ร—4)+(3ร—6)=3+8+18=29\sum x_iy_i = (1ร—3) + (2ร—4) + (3ร—6) = 3 + 8 + 18 = 29

  • โˆ‘yi2=32+42+62=9+16+36=61\sum y_i^2 = 3^2 + 4^2 + 6^2 = 9 + 16 + 36 = 61

Final answer:

14+2(29)+61=14+58+61=13314 + 2(29) + 61 = 14 + 58 + 61 = 133


Part 2: Measures of Central Locationโ€‹

๐ŸŽฏ The Big Questionโ€‹

What's a "typical" or "representative" value in the data?

Example claim: "Economists earn more than teachers"

Does EVERY economist earn more than EVERY teacher? No!

So we need a way to describe the "center" of the data.

Three main measures:

Mode, Mean, and Median


๐Ÿ“Š Measure 1: Mode (xฬ‚)โ€‹

Definition: The value (or category) that appears MOST frequently

Notation: xฬ‚ (x-hat)

For Qualitative Variables:โ€‹

Example: Preferred social network

Social Networkf(x)
Instagram43
Facebook16
Twitter4
TikTok2
LinkedIn1
None7

Mode = Instagram (highest frequency)

๐Ÿ’ก Memory hack: Mode = Most popular = Most Often Displayed Everywhere


For Discrete Quantitative Variables:โ€‹

Example: Number of people in family

People (x)f(x)
23
32
41
53
61

Mode = 2 and 5 (both appear 3 times - bimodal!)


For Continuous Quantitative Variables:โ€‹

Example: Test scores

Scoresf(x)ld
40-605200.25
60-705100.5
70-751052
75-8510101
85-10015151

Mode = 72.5 (middle of class 70-75, which has highest density d = 2)

โš ๏ธ Important: For continuous variables, use DENSITY (d), not frequency!

๐Ÿ’ก Memory hack: The modal class is the "densest crowd"


๐Ÿ” Characteristics of Mode:โ€‹

โœ“ Not affected by extreme values

โœ“ Not affected by other frequencies (only cares about the winner)

โœ— Can have multiple modes (bimodal, multimodal)

โœ— Might not represent the "center" well


๐Ÿ“Š Measure 2: Mean (xฬ„)โ€‹

Definition: The arithmetic average - sum all values and divide by count

Notation: xฬ„ (x-bar)

Basic Formula:โ€‹

xห‰=โˆ‘i=1nxin=x1+x2+...+xnn\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + ... + x_n}{n}

Example: Number of people in family: 2, 2, 6, 5, 3, 5, 5, 4, 3, 2

xห‰=2+2+6+5+3+5+5+4+3+210=3710=3.7\bar{x} = \frac{2+2+6+5+3+5+5+4+3+2}{10} = \frac{37}{10} = 3.7

๐Ÿ’ก Memory hack: Mean = What everyone would get if we distributed equally


Mean from Frequency Table:โ€‹

Formula:

xห‰=โˆ‘i=1kxiร—fiโˆ‘i=1kfi=โˆ‘i=1kxiร—pi\bar{x} = \frac{\sum_{i=1}^{k} x_i \times f_i}{\sum_{i=1}^{k} f_i} = \sum_{i=1}^{k} x_i \times p_i

Why? If 2 appears 3 times, instead of writing 2+2+2, write 2ร—3!

Example:

xf(x)p(x)x ร— f(x)x ร— p(x)
2330%60.6
3220%60.6
4110%40.4
5330%151.5
6110%60.6
Total10100%373.7

Using frequencies:

xห‰=3710=3.7\bar{x} = \frac{37}{10} = 3.7

Using relative frequencies:

xห‰=0.6+0.6+0.4+1.5+0.6=3.7\bar{x} = 0.6 + 0.6 + 0.4 + 1.5 + 0.6 = 3.7

๐Ÿ’ก Memory hack: "Multiply before you divide" - weight each value by how often it appears!


Mean for Continuous Variables:โ€‹

Use the MIDPOINT of each class!

Example: Test scores

Scoresf(x)Midpoint (xแตข)xแตข ร— f(x)
40-60550250
60-70565325
70-751072.5725
75-851080800
85-1001092.5925
Total40-3025

xห‰=302540=75.625\bar{x} = \frac{3025}{40} = 75.625

How to find midpoint:

Midpoint=Lowerย limit+Upperย limit2\text{Midpoint} = \frac{\text{Lower limit} + \text{Upper limit}}{2}

Example: For 40-60 โ†’ Midpoint = (40+60)/2 = 50


๐Ÿ” Characteristics of Mean:โ€‹

โœ“ Uses all data - every value matters

โœ“ Most common measure - used everywhere

โœ— Affected by extreme values (outliers can pull it way off!)

โœ— May not be an actual data value (can't have 3.7 people!)

Special Property: Sum of deviations from mean = 0

โˆ‘i=1n(xiโˆ’xห‰)=0\sum_{i=1}^{n} (x_i - \bar{x}) = 0

Example: Data: 2, 2, 6, 5, 3, 5, 5, 4, 3, 2 (xฬ„ = 3.7)

xแตขxแตข - xฬ„
2-1.7
2-1.7
6+2.3
5+1.3
3-0.7
5+1.3
5+1.3
4+0.3
3-0.7
2-1.7

Sum = 0 โœ“

๐Ÿ’ก Memory hack: The mean is like a "balance point" - negatives and positives cancel out!


๐Ÿ“Š Measure 3: Median (xฬƒ)โ€‹

Definition: The middle value when data is sorted - splits data 50-50

Notation: xฬƒ (x-tilde)

How to Find Median:โ€‹

Step 1: Sort data from smallest to largest

Step 2: Find the middle position


If n is ODD:โ€‹

Formula:

x~=xn+12\tilde{x} = x_{\frac{n+1}{2}}

Example: Scores: 50, 60, 60, 70, 80 (n = 5)

Position of median = (5+1)/2 = 3rd value

Median = 60


If n is EVEN:โ€‹

Formula:

x~=xn2+xn2+12\tilde{x} = \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2}

Example: Scores: 50, 60, 60, 70, 80, 90 (n = 6)

Positions: 6/2 = 3rd and 4th values

Median = (60 + 70)/2 = 65

๐Ÿ’ก Memory hack:

  • Odd: One clear middle person

  • Even: Two middle people, average them!


Median from Frequency Table:โ€‹

Example: Number of people in family (n = 20)

xf(x)F(x)
233
358
4614
5317
6320

Find: Position n/2 = 20/2 = 10th value

Look at F(x):

  • F(4) = 14 (14 observations up to x=4)

  • F(3) = 8 (8 observations up to x=3)

The 10th value is in the x=4 category!

Median = (xโ‚โ‚€ + xโ‚โ‚)/2 = (4 + 4)/2 = 4


Median for Continuous Variables:โ€‹

Find the "median class" - the class containing position n/2

Example: Test scores (n = 100)

Scoresf(x)F(x)
40-6055
60-701015
70-752035
75-854075
85-10025100

Position n/2 = 100/2 = 50th value

  • F(70-75) = 35 (not enough)

  • F(75-85) = 75 (includes position 50!)

Median is in class 75-85

๐Ÿ’ก Memory hack: Keep adding F(x) until you pass n/2!


๐Ÿ” Characteristics of Median:โ€‹

โœ“ Not affected by extreme values (only cares about position, not actual values!)

โœ“ Always an actual possible value (for discrete) or in a real class

โœ— Doesn't use information from all values

Powerful example:

Salaries: 3000, 4000, 4700, 5000, 5500

Median = 4700 (middle value)

Now change 5500 to 5,500,000!

Median still = 4700 (position unchanged!)

Mean would jump dramatically!

๐Ÿ’ก Memory hack: Median is the "bodyguard" - protects against extreme outliers!


๐Ÿ”„ Linear Transformationsโ€‹

What if we add/multiply all values by a constant?

Rules:

If zi=a+bxiz_i = a + bx_i (where a and b are constants):

zห‰=a+bxห‰\bar{z} = a + b\bar{x}

z~=a+bx~\tilde{z} = a + b\tilde{x}

z^=a+bx^\hat{z} = a + b\hat{x}

Example: Test scores of 7 students: 91, 77, 65, 83, 88, 71, 98

xห‰=91+77+65+83+88+71+987=5737=81.86\bar{x} = \frac{91+77+65+83+88+71+98}{7} = \frac{573}{7} = 81.86

Teacher adds 2 points to everyone:

New mean:

zห‰=81.86+2=83.86\bar{z} = 81.86 + 2 = 83.86

๐Ÿ’ก Memory hack: "What you do to the data, you do to the measures!"


๐Ÿ“ˆ Distribution Shapes & Central Measuresโ€‹

Symmetric Bell-Shaped (Normal Distribution):โ€‹

        ๐Ÿ“Š
๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š
๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š
๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š

Mode = Median = Mean

All three are equal!


Symmetric (Two Peaks):โ€‹

  ๐Ÿ“Š      ๐Ÿ“Š
๐Ÿ“Š๐Ÿ“Š ๐Ÿ“Š๐Ÿ“Š
๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š

Mode < Median = Mean

Two modes, median and mean still equal


Uniform Distribution:โ€‹

๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š

No clear mode
Median = Mean

Positive Skew (Right Tail):โ€‹

๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š
๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š
๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š โ†’

Mode < Median < Mean

Mean pulled by high values!

๐Ÿ’ก Memory hack: "Mean follows the tail" - gets pulled toward outliers

Example: Salaries - few very high earners pull mean up


Negative Skew (Left Tail):โ€‹

        ๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š
๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š
โ† ๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š๐Ÿ“Š

Mean < Median < Mode

Mean pulled by low values!


๐Ÿ“‹ Decision Guide: Which Measure to Use?โ€‹

SituationBest MeasureWhy
Symmetric data, no outliersMeanUses all info, most precise
Skewed dataMedianNot affected by extreme values
Categorical dataModeOnly option!
Need "most typical"ModeMost common actual value
Extreme outliers presentMedianRobust against extremes

๐ŸŽฏ Test Question Practiceโ€‹

Question: "University graduate salaries are positively skewed. Therefore, the percentage earning above average is greater than the percentage earning below average."

True or False?

Answer: FALSE!

Explanation:

  • Positively skewed โ†’ tail on right (high salaries)

  • Mean gets pulled UP by extreme high salaries

  • Mean > Median

  • Since median splits data 50-50:

    • 50% earn below median

    • 50% earn above median

  • Since mean > median:

    • MORE than 50% earn below mean

    • LESS than 50% earn above mean

๐Ÿ’ก Memory hack: In positive skew, the mean "chases" the few rich people, leaving most below average!


๐Ÿ“Š Advanced Conceptsโ€‹

Skewnessโ€‹

Measures asymmetry of distribution:

Skewness=0โ†’Symmetric\text{Skewness} = 0 \rightarrow \text{Symmetric}

Skewness>1โ†’Highlyย right-skewed\text{Skewness} > 1 \rightarrow \text{Highly right-skewed}

Skewness<โˆ’1โ†’Highlyย left-skewed\text{Skewness} < -1 \rightarrow \text{Highly left-skewed}

Rule of thumb:

  • Between -0.5 and 0.5 โ†’ Approximately symmetric

  • Between 0.5 and 1 (or -0.5 and -1) โ†’ Moderately skewed

  • Beyond ยฑ1 โ†’ Highly skewed


Kurtosisโ€‹

Measures "peakedness" of distribution:

  • Mesokurtic (Kurt = 3): Normal distribution

  • Leptokurtic (Kurt > 3): Tall and thin peak, heavy tails

  • Platykurtic (Kurt < 3): Flat peak, light tails


๐ŸŽ“ Key Formulas Summaryโ€‹

MeasureFormulaUse When
ModeValue with highest f(x) or dAny variable type
Mean (raw)xห‰=โˆ‘xin\bar{x} = \frac{\sum x_i}{n}Individual data
Mean (frequency)xห‰=โˆ‘xifiโˆ‘fi\bar{x} = \frac{\sum x_i f_i}{\sum f_i}Frequency table
Mean (relative)xห‰=โˆ‘xipi\bar{x} = \sum x_i p_iRelative frequency
Median (odd n)x~=xn+12\tilde{x} = x_{\frac{n+1}{2}}Sorted odd data
Median (even n)x~=xn2+xn2+12\tilde{x} = \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2}Sorted even data
Linear transformzห‰=a+bxห‰\bar{z} = a + b\bar{x}When transforming all data

๐Ÿ’ก Master Memory Hacksโ€‹

  1. Sigma โˆ‘ = Smart calculator that adds for you

  2. Mode = Most Often Displayed Everywhere

  3. Mean = Everyone gets equal share

  4. Median = The middleman/bodyguard (protects from extremes)

  5. Multiplication & Squares = Cannot split the sum!

  6. Mean follows the tail in skewed distributions

  7. Midpoint = Average of class limits

  8. F(x) = Climbing stairs - keep adding


๐ŸŽฏ Quick Reference Mind Mapโ€‹


โš ๏ธ Common Exam Mistakesโ€‹

โŒ Splitting multiplication/squares in sigma sums

โŒ Using frequency instead of density for continuous mode

โŒ Forgetting to sort data before finding median

โŒ Confusing "at least" with "at most"

โŒ Thinking positive skew means more above average

โŒ Using mean when there are extreme outliers


๐Ÿ† Pro Exam Tipsโ€‹

  1. See โˆ‘? Check if you can pull constants out!

  2. Finding mode in continuous? Look for highest DENSITY (d), not frequency!

  3. Extreme values present? Use median, not mean

  4. Positive skew? Mean > Median > Mode (remember: mean follows tail)

  5. Linear transformation? Apply it to the measures directly

  6. Frequency table? Use weighted formula (x ร— f)

Remember: The distribution shape tells you the relationship between mode, median, and mean!